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In this work, natural convection in a differentially heated binary mixture is studied
analytically and numerically. The fluid is subjected to the Soret effect and is contained
in a shallow rectangular porous cavity. All four faces are exposed to uniform heat
fluxes, opposite faces being heated and cooled, respectively. Analytical solutions for
the stream function, temperature and concentration fields are obtained using a parallel
flow assumption in the core region of the cavity and an integral form of the energy
and constituent equations. Numerical confirmation of the analytical predictions is also
obtained. Results are presented first in the presence of a vertical temperature gradient
(a = 0) for which the solution takes the form of a standard Bénard bifurcation. For
this situation, steady bifurcations are either pitchfork or subcritical, depending on
the separation parameter ϕ and Lewis number Le. The imperfection brought by a
horizontal temperature gradient (a �= 0) to the bifurcation is then investigated. Both
the nonlinear analytical model and the numerical solution indicate that, depending
on a, ϕ and Le, the onset of motion occurs through subcritical bifurcations. The
existence of transcritical bifurcations is also demonstrated. The special case where the
buoyancy forces induced by the thermal and solutal forces are opposing and of equal
intensity (ϕ = −1) is also discussed. For this particular situation, the supercritical
Rayleigh number for the onset of convection is predicted on the basis of a linear
stability analysis. Multiple steady states near the threshold of convection are found.

1. Introduction
Recently, convection in a porous medium saturated by a binary fluid has received

attention owing to its relevance in many natural and industrial problems. Prominent
among these are the migration of moisture contained in fibrous insulation, grain
storage, the transport of contaminants in saturated soils, the underground disposal
of nuclear wastes, drying processes, etc. Convection in binary fluids is more complex
than in pure fluids as a consequence of the difference in time-scale diffusion between
energy and species. The concentration in binary fluids may be induced by the solutal
boundary conditions applied on the system (double-diffusive problems). However, the
species gradients can also be induced in a binary solution by the thermal gradients
via the Soret effect (cross-diffusion problems).

Earlier works on double-diffusive natural convection in porous media are concerned
with the case of a horizontal layer heated and salted from the bottom. For this
configuration the onset of convection was predicted by Nield (1967), on the basis
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of a linear stability analysis, for various thermal and solutal boundary conditions.
This flow configuration was reconsidered by Taunton, Lightfoot & Green (1972),
Rudraiah, Shrimani & Friedrich (1986) and Taslim & Narusaw (1986). A linear
stability analysis was carried out by Poulikakos (1986) to study double diffusive
convection in a horizontal sparsely packed porous layer. The flow in the porous matrix
was investigated by using the Brinkman-extended Darcy model, which accounts for
friction due to macroscopic shear. Results for a pure viscous fluid and a Darcy
(densely packed) porous medium were obtained from his analysis as limiting cases.
A few studies concerning finite-amplitude convection in a two-component fluid-
saturated porous layer are also available in the literature. The nonlinear stability
of thermohaline convection in a horizontal porous layer heated from below has
been considered by Rudraiah, Shrimani & Friedrich (1982). The critical Rayleigh
number, for the onset of finite-amplitude convection, was derived using a truncated
representation of the Fourier series. The effects of Prandtl, Lewis and Darcy numbers
on convection are discussed by these authors. Thermohaline convective flows through
a square porous cavity heated from below have been investigated numerically by
Rosenberg & Spera (1992) for various boundary and initial conditions. Parametric
relationships, obtained by these authors for Nu and Sh for a cavity salted from below,
were found to be in good agreement with the results of Trevisan & Bejan (1987).
Chen & Chen (1993) considered nonlinear two-dimensional double-diffusive fingering
convection in a saturated porous medium. The stability boundaries which separate
regions of different types of convective motion were identified in terms of solute and
thermal Rayleigh numbers.

The onset and development of convection in a horizontal porous enclosure have
been investigated by Mamou & Vasseur (1999) using the linear and nonlinear
perturbation theories. Both the imposition of Dirichlet or Neumann boundary
conditions on temperature and solute are considered by these authors. Analytical
solutions are derived to predict the flow behaviour. The existence of multiple solutions,
for a given set of governing parameters, is demonstrated for the case of opposing flows.
The onset of double-diffusive convection in a porous layer, with mixed boundary
conditions for heat and solute applied on the horizontal boundaries, has been
investigated by Mahidjiba, Mamou & Vasseur (2000) on the basis of the linear stability
theory. Numerical results for the finite-amplitude convection, obtained by solving
numerically the full governing equations, demonstrate that subcritical convection is
possible. The case of a horizontal porous layer heated horizontally and salted from
the bottom was considered by Kalla et al. (2001). It was demonstrated analytically
and numerically that multiple stable solutions are possible for this situation.

A few studies have also concerned the Soret effect in a horizontal porous layer filled
with a binary fluid. The linear stability theory was used by Patil & Rudraiah (1980) and
Brand & Steinberg (1983a) to investigate the instabilities in a layer heated from below
or from above. The possibility of an oscillatory convective instability when heating
from above was pointed out. Nonlinear effects in the convective instability near the
threshold were discussed by Brand & Steinberg (1983b). The convective instability
of a fluid mixture in a porous medium with a time-dependent temperature gradient
was investigated by Ouarzazi & Bois (1994) using a linear asymptotic analysis. The
onset of Soret-driven convection in a porous layer was studied by Sovran, Charrier-
Mojtabi & Mojtabi (2001). When the layer is heated from below, it was found that
convection occurs via a stationary bifurcation or via a Hopf bifurcation, depending
on the value of the governing parameters. The Soret effect on natural convection
in a horizontal porous layer subjected to uniform fluxes of heat was considered by
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Figure 1. Schematic diagram of the physical model and coordinate system.

Bourich et al. (2002). The existence of subcritical convection was demonstrated by
these authors. A comparison between double-diffusive and Soret-induced convection
in a shallow horizontal porous layer was made by Bahloul, Boutana & Vasseur (2003).
The thresholds for finite-amplitude oscillatory and monotonic convection instabilities
were determined in terms of the governing parameters. An analytical solution, valid
in the limit of a shallow layer, was proposed and found to be in good agreement
with numerical simulations. A linear stability of the flow predicted by the analytical
model, was conducted in order to predict the thresholds for Hopf bifurcation.

The aim of the present analysis is to study the Soret-induced convection in a
horizontal porous enclosure subjected to cross heat fluxes. An analytical solution is
proposed for a shallow cavity on the basis of the parallel-flow approximation. The
results are verified numerically by solving the full nonlinear set of governing equations
with a control volume method.

The paper is organized as follows: in the next section, the physical system is
described and a mathematical model of the problem is derived. The control volume
approach used to solve the full governing equations is discussed in § 3. The analytical
model, based on the parallel-flow approximation, is proposed § 4. Section 5 deals with
the particular situation of the buoyancy forces induced when the thermal and solutal
effects are opposing each other and of equal intensity. For this situation, a linear
stability of the rest state is carried out to predict the critical Rayleigh number defining
the onset of motion from the rest state. Finally, concluding remarks are given in § 6.

2. Mathematical model
The system to be studied consists of a horizontal rectangular porous cavity with an

aspect ratio A= L′/H ′, where L′ is the length and H ′ the height of the cavity, filled
with an incompressible Newtonian binary fluid mixture (figure 1). The bottom and
top horizontal impermeable boundaries are subject to vertical uniform fluxes of heat
q ′. Also, a uniform heat flux aq ′, where a is a constant, is applied on the two vertical
impermeable walls.

Assuming that the temperature and concentration gradients are small, as required
by the Boussinesq approximation, the diffusive heat and mass fluxes q ′ and j ′ are
given by De Groot & Mazur (1962):

q ′ = −k∇T ′, (2.1)

j ′ = −ρD∇N − ρD′N(1 − N)∇T ′, (2.2)
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where k is the thermal conductivity, D is the mass diffusivity and D′ the phenomeno-
logical coefficient for the Soret effect. All those coefficients are assumed to be constant
in the considered range of temperature T ′ and mass fraction N .

The density ρ of the binary solution is assumed to be a linear function of tempe-
rature and composition, i.e.

ρ = ρ0[1 − β ′
T (T ′ − T ′

0) − βN (N − N0)], (2.3)

where ρ0 is the fluid mixture density at temperature T ′ = T ′
0 and mass fraction N = N0

and β ′
T is the thermal expansion coefficient and βN the solute analogue of β ′

T . The
subscript 0 refers to the condition at the origin of the coordinate system. The mass
fraction of the denser component of the mixture, N0, is assumed to be initially uniform.

The equations expressing conservation of momentum, energy and species are given
by:

∇2Ψ ′ = −gKβ ′
T

ν

∂

∂x ′

(
T ′ +

βN

β ′
T

N

)
, (2.4)

(
ρCp

) ∂T ′

∂t ′ +
(
ρCf

)
V ′ · ∇T ′ = k∇2T ′, (2.5)

φ
∂N

∂t ′ + V ′ · ∇N = D∇2N + D′N0 (1 − N0) ∇2T ′, (2.6)

where V ′ is the Darcy velocity, g the acceleration due to gravity, ν the kinematic
viscosity, K and φ are, respectively, the permeability and the porosity of the porous
medium,

(
ρCp

)
and

(
ρCf

)
are, respectively, the heat capacity of the saturated porous

medium and the fluid and Ψ ′ is the streamfunction. As usual, we have u′ = ∂Ψ ′/∂y ′

and v′ = −∂Ψ ′/∂x ′, such that the conservation of mass is satisfied.
In deriving equation (2.6) it has been assumed that the cross-diffusion Soret

coefficient N(1−N) is constant, not subject to fluctuation, and equal to its initial value
N0(1−N0). It has been argued in the past that this assumption is more or less realistic
for equimolar mixtures (Platten & Legros 1984) or when the Soret effect is relatively
weak (Bergeon et al. 1998). In any case, the simplified mass balance equation (2.6) is
currently invoked in most of the recent available studies on this topic. This is the case
not only for Soret-induced convection in porous media, but also for Soret-induced
convection in liquids (see for instance Batiste, Alonso & Mercader 2004; Bourich
et al. 2004, 2005; and Piquer et al. 2005).

The following dimensionless variables (primed quantities are dimensional) are used:

(x, y) = (x ′, y ′)/H ′, (u, v) = (u′, v′)H ′/α, t = t ′α/H ′2σ,

T = (T ′ − T ′
0)/
T ′, 
T ′ = q ′H ′/k, C =N/
N,


N = 
T ′N0(1 − N0)D
′/D, ε = φ/σ, Ψ = Ψ ′/α,

⎫⎬
⎭ (2.7)

where t ′ is the time, α = k/(ρCf ) the thermal diffusivity. Also, σ = (ρCp)/
(
ρCf

)
is

the heat capacity ratio.
The governing equations that describe the system behaviour are expressed in terms

of streamfunction, temperature and concentration, in dimensionless form, as follows:

∇2Ψ = −RT

(
∂T

∂x
+ ϕ

∂C

∂x

)
, (2.8)

∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
= ∇2T , (2.9)

ε
∂C

∂t
+ u

∂C

∂x
+ v

∂C

∂y
=

1

Le
(∇2C − ∇2T ). (2.10)
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The boundary conditions are slip conditions and a constant heat flux applied on
the boundaries. Also, the normal mass flux, (2.2), is zero on the walls. Thus, we obtain
the following system for the boundary conditions:

x = ± 1
2
A, Ψ =0,

∂T

∂x
=

∂C

∂x
= −a,

y = ± 1
2
, Ψ =0,

∂T

∂y
=

∂C

∂y
= −1.

⎫⎪⎪⎬
⎪⎪⎭ (2.11)

Equations (2.8)–(2.11) indicate that the present problem is governed by six
dimensionless parameters, namely the thermal Rayleigh number RT , the separation
parameter ϕ, the Lewis number Le, the normalized porosity ε, the cavity aspect ratio
A and the constant a, defined as

RT =
gβ ′

T K
T ′H ′

αν
, ϕ =

βN
N

β ′
T 
T ′ ,

Le =
α

D
, A=

L′

H ′ , ε =
φ

σ
.

⎫⎪⎬
⎪⎭ (2.12)

It is observed that for ϕ > 0, both the thermal and solutal buoyancy forces are
cooperative whereas for ϕ < 0 they are opposing each other.

The vertical temperature and mass fraction across the enclosure are expressed in
terms of the Nusselt and Sherwood numbers, respectively, defined as

Nu =
1


T
, Sh =

1


C
, (2.13)

where 
T = T (0, −1/2) − T (0, 1/2) and 
C =C(0, −1/2) − C(0, 1/2) are the tempe-
rature and concentration differences, evaluated at x =0.

In the above equations, Nu has its usual meaning, whereas Sh is related to the
concentration distribution within the cavity induced by the Soret effect and by
convection.

3. Numerical solution
Solution of the flow field and concentration distributions within the enclosure may

be found using a control volume approach and adapted mesh grid. The governing
equations for the streamfunction, (2.8), and temperature and concentration, (2.9)
and (2.10), are first discretized using the classical power law scheme. The discretized
equations for Ψ , T and C are then solved at each time step using the last available
field values, until convergence to a steady or an oscillating state is achieved. The
energy and concentration equations (2.9) and (2.10) were solved using an alternating
direction implicit method (ADI). The streamfunction field was obtained from (2.8)
using the successive over-relaxation method (SOR) and known temperature and
concentration distributions. The mesh size required for sufficient numerical accuracy
depends mainly on the thermal and solutal Rayleigh numbers and the aspect ratio of
the porous layer. The nodal points were skewed in the x and y directions to obtain
a greater concentration of points near the solid boundaries. Numerical tests, using
various mesh sizes, were done for the same conditions in order to determine the best
compromise between the accuracy of the results and use of computer time. Besides the
usual control, the accuracy of computations was estimated using the energy and mass
fraction conservation within the system. Typical numerical results are presented in
figure 2 for RT = 30, ϕ = −0.1, Le =10, a =0.05 and A= 8. On the graph streamlines,
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(a)
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Figure 2. Contour lines of (a) streamfunction, (b) temperature and (c) mass fraction for
RT = 30, ϕ = −0.1, Le= 10, a = 0.05 and A = 8: Ψ0 = 1.60, Nu = 1.89, Sh = 6.47.

isotherms and isoconcentrates are presented from top to bottom. The results show
that for a long shallow cavity (A � 1) the flow in the core region of the enclosure is
essentially parallel with a linearly dependency of the temperature and mass fraction
in the horizontal direction. The analytical solution, developed in the following section,
will rely on these observations.

4. Analytical solution for the convective flow
An approximate solution can be sought for a long shallow cavity (A � 1). In this

limit, as discussed in detail by Bahloul et al. (2003) and other authors, the flow in the
central portion of the cavity can be assumed to be parallel and in the x-direction.
Thus we have

Ψ (x, y) = Ψ (y) (4.1)

in the core region of the enclosure.
As the fluid moves with a constant velocity in the core part of the cavity, the

uniform heat flux q ′ at the walls increases its temperature linearly. There is, however,
an unknown transverse variation of the temperature in the y-direction. Thus, we have

T (x, y) = CT x + θT (y), (4.2)

where CT is the temperature gradient along the x-direction.
In a similar way, the mass fraction distribution in the core of the cavity can be

expressed as

C(x, y) =CCx + θC(y), (4.3)

where CC is the mass fraction gradient along the x-direction.
Substituting the above equations into the steady form of equations (2.8)–(2.10), we

obtain

d2Ψ

dy2
= −RT (CT + ϕCC) , (4.4)

d2θT

dy2
=CT

dΨ

dy
, (4.5)

d2θC

dy2
= (LeCC + CT )

dΨ

dy
. (4.6)

The parallel-flow approximation is only applicable in the core of the enclosure.
Flow in the end regions is much more complicated. For this reason, the thermal
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boundary conditions in the x-direction, (2.11), cannot be applied directly with this
approximation. Following Bejan & Tien (1978) and Kimura, Vynnycky & Alavyoon
(1995), we can, however, impose an equivalent energy flux condition in that direction,
such that one obtains

CT + a =

∫ 1/2

−1/2

dΨ

dy
θT dy. (4.7)

Similarly, for the mass fraction it is found that

CC − CT =

∫ 1/2

−1/2

dΨ

dy
θC dy. (4.8)

The solution of (4.4)–(4.6), satisfying boundary conditions (2.11) is

Ψ = Ψ0(1 − 4y2), (4.9)

θT =
CT Ψ0

3
(3y − 4y3) − y, (4.10)

θC =
(LeCC + CT )Ψ0

3
(3y − 4y3) − y, (4.11)

where

Ψ0 = 3
2
R̄T (CT + ϕCC), R̄T = RT /Rsup, Rsup = 12, (4.12)

and where the reason for the introduction of the constant Rsup will be explained in
the following section.

Substituting (4.9)–(4.11) into (4.7) and (4.8) and integrating, yields

CT =
4bΨ0 − 3ab

3
(
Ψ 2

0 + 2b
) , (4.13)

CC =
4bLeΨ0 + 3CT

[
LeΨ 2

0 − b(1 − 1/Le)
]

3(Le2Ψ 2
0 + 2b)

, (4.14)

where b = 15/16.
Substituting the above values of CT and CC into the expression for Ψ0, (4.12), the

following fifth-order polynomial is obtained

f (Ψ0, RT ) = Ψ0

[
Le4Ψ 4

0 − 2bLe2d1Ψ
2
0 − b2d2

]
+ d3Ψ

2
0 + d4 = 0, (4.15)

where

d1 = R̄T Le2 − (Le2 + 1), d2 = 4R̄T Le2[1 + ϕ(Le + 1)] − 4Le2,

d3 = 3R̄T abLe3[Le − ϕ], d4 = 6R̄T ab2Le2[1 + ϕ]

}
(4.16)

For a given set of the governing parameters, RT , a, Le and ϕ, the above expression
can be solved numerically, using for instance a Newton–Raphson scheme, to obtain
Ψ0. Then the values of CT and CC can be evaluated from (4.13) and (4.14), respectively.

Substituting (4.10) and (4.11) into (2.13), it is found that the Nusselt and Sherwood
numbers are given, respectively, by

Nu =6
Ψ 2

0 + 2b

Ψ 2
0 + 4b(aΨ0 + 3)

, (4.17)

Sh =6
Le2Ψ 2

0 + 2b

Le2Ψ 2
0 + 4b(aLeΨ0 + 3) − 6b(1 + Le)Nu/(Nu − 1)

. (4.18)
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Figure 3. Bifurcation diagrams as predicted by the parallel-flow approximation for a = 0:
(a) effect of ϕ for Le = 10, (b) effect of Le for ϕ = −0.01. —, - - -, analytical; �, numerical.

5. Results and discussion
5.1. Effect of parameter ϕ on convection

In this section, the effect of the separation parameter ϕ on finite-amplitude convection,
as predicted by the parallel-flow approximation, is compared with the numerical results
obtained by solving the full governing equations. Convection in the absence of side
heating, for which the solution takes the form of a standard Bénard bifurcation, is
first considered. Then, the imperfection brought by the side heating to the bifurcation
is investigated.

5.1.1. Convection in the absence of side heating (a = 0)

In the absence of side heating, convection in the fluid layer is driven solely by the
vertical gradients of heat and solute. For this situation, the velocity, temperature and
mass fraction fields and Nusselt and Sherwood numbers are predicted by (4.9)–(4.12)
and (4.17) and (4.18) in which the values of CT and CC are obtained by setting a = 0 in
(4.13) and (4.14). From (4.15), it is readily found that the flow intensity Ψ0 is given by

Ψ0 = ±
√

b

Le

[
d1 ±

√
d2

1 + d2

]1/2

, (5.1)

where

d1 = R̄T Le2 − (Le2 + 1),

d2 = 4R̄T Le2[1 + ϕ(Le + 1)] − 4Le2.
(5.2)

The signs + and − outside the brackets refer to the possible occurrence of counter-
clockwise and clockwise circulations, respectively. Inside the brackets, they refer to
stable and unstable branches, respectively.

The conditions d1 < 0 and d2 = 0 yield the critical Rayleigh number for the onset
of supercritical convection R

sup
T C , characterized by a transition from the quiescent state

to a convective regime occurring through zero flow amplitude (Ψ0 = 0), as

R
sup
T C =

Rsup

[1 + ϕ(Le + 1)]
. (5.3)

Figure 3(a) shows typical bifurcation diagrams for Ψ0 as a function of RT and ϕ for
Le=10. The analytical solution, predicted by the present theory, is represented by the
solid (stable) and dashed (unstable) lines and is seen to be in good agreement with
the numerical results depicted by solid squares. The case of pure thermal convection
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(ϕ = 0) will be discussed first. For this situation, figure 3(a) indicates that a pitchfork
bifurcation occurs at a supercritical Rayleigh number R

sup
T C = 12, as predicted by (5.3)

and in agreement with Nield (1967). The way in which this pitchfork bifurcation is
affected by the Soret effect is illustrated for various values of ϕ. The case ϕ > 0, namely
ϕ = 0.01, for which both the thermal and solutal buoyancy forces are destabilizing
is considered first. For RT between the thermal-solutal threshold (Rsup

T C = 10.81) and
the thermal one (Rsup

T C = 12), it is seen that the magnitude of the resulting flow field
(i.e. of Ψ0) is relatively weak. However, as the value of RT is made larger than
the pure thermal threshold, the flow becomes much stronger. The contour lines of
streamfunction, temperature and mass fraction (not presented here) indicate that
for this situation the convective flow is driven by the temperature gradients, the
mass fraction in the central part of the cavity being almost uniform. This is due
to the large mixing resulting from the strong convective motion induced by the
thermal-dominated regime. On the other hand, for ϕ < 0, the destabilizing thermal
buoyancy forces are opposed to the stabilizing solutal influence. The resulting curve
(for ϕ = −0.01) indicates the occurrence of a subcritical bifurcation for which the onset
of convection occurs through finite-amplitude convection. The subcritical Rayleigh
number Rsub

T C at which such flows are induced can be obtained, from (5.1) and (5.2)
from the conditions d1 > 0 and d2

1 + d2 = 0, as

Rsub
T C =

(1 + Le)Rsup

Le2
[Le − 2ϕ − 1 + 2

√
ϕ(ϕ − Le + 1)]. (5.4)

It is observed that, although the thermal and solutal regimes are also present for
this situation, the solutal branches depicted as dashed lines are now unstable. They
are connected with stable thermal branches by saddle-node bifurcations. Also, they
are connected to the supercritical Rayleigh number R

sup
T C provided that this latter is

greater than zero. For instance, for ϕ = −0.01, the solutal branches indicate that Ψ0 = 0
at a supercritical Rayleigh number R

sup
T C =13.48. This situation yields five solutions

(two stable and two unstable convective flows, and a purely diffusive flow (Ψ0 = 0)
which is stable up to the supercritical Rayleigh number R

sup
T C . However, according to

(5.3), when ϕ > −0.091 the supercritical Rayleigh number is negative and the solutal
branches tend towards zero only as the value of RT tends asymptotically towards
infinity. For this situation, convection can occur for RT < 0 (cavity heated from the
top) provided that |RT | > |Rsup

T C |.
The influence of the Lewis number on the bifurcation character is illustrated in

figure 3(b) for ϕ = −0.01. According to the present solution it can be shown that the
condition

ϕ < ϕc =
1

(Le + 1)(Le2 + 1)
(5.5)

must be satisfied for the existence of subcritical convection. Thus for the present
case, the Lewis number expressing the transition from a supercritical to a subcritical
bifurcation is Le= 4.25. As can be observed from the graph, the bifurcation is
supercritical when Le< 4.25 (as illustrated by the curve for Le= 1) and subcritical
when Le> 4.25.

5.1.2. Convection in the presence of side heating (a �= 0)

The imperfection brought by the side heating to the bifurcation curves discussed
above is now investigated. Because of the buoyant torque ∇ ρ × g, the hydrostatic
state cannot be realized (at least exactly) with the horizontally imposed temperature
gradient. Thus, the conductive state in the absence of side heating degenerates into
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Figure 4. Critical Rayleigh number R
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T C as a function of ϕ for the case Le= 10 and a = 0.05.

a ‘pseudoconductive’ state. The influence of side heating on the convective state is
discussed below.

Side heating is expected to affect the critical Rayleigh numbers for the onset of
convection. These critical Rayleigh numbers, which depend upon the parameters a,
Le and ϕ, can be deduced easily from the present theory. For subcritical Rayleigh
number, the derivative of RT with respect to Ψ0 should be cancelled in (4.15). It
can be demonstrated easily that ∂RT /∂Ψ0 corresponds to ∂f /∂Ψ0 = 0, such that one
obtains

g(Ψ0) = 5Le4Ψ 4
0 − 6bd1Le2Ψ 2

0 − b2d2 + 2d3Ψ0 = 0. (5.6)

For a given set of the governing parameters, i.e. a, Le and ϕ, the system of equations
(5.1) and (5.6) can be solved numerically to obtain Ra

T C and Ψ a
0 .

Figure 4 shows the subcritical Rayleigh number R
a

T C (= Ra
T C/Rsup) as a function of

ϕ for a =0.05 and Le= 10, as predicted by (5.6). The results indicate the existence
of three different curves identified by the symbols 1, 2 and 3. For completeness,
the critical Rayleigh numbers for the onset of motion in the absence of side heating

(a = 0), namely R
sup

T C (= R
sup
T C/Rsup), (5.3), and R

sub

T C (= Rsub
T C/Rsup), (5.4), are also included

in that graph. In the presence of side heating, the subcritical Rayleigh number R
sub

T C

degenerates into two distinct subcritical Rayleigh numbers, namely R
a,1

T C >R
sub

T C and

R
a,2

T C <R
sub

T C . As discussed above, in the presence of side heating, a convective state is
always possible (except for the case ϕ = −1 for which convection occurs only above a
subcritical Rayleigh number). On the other hand, the supercritical Rayleigh number

R
sup

T C degenerates into the subcritical Rayleigh number R
a,3

T C . It will be shown that

R
a,3

T C > 0 is the critical Rayleigh number for the existence of the ‘pseudoconductive’

state, whereas R
a,3

T C < 0 is the critical Rayleigh number corresponding to the threshold
below which multiple solutions may exist in the case of a cavity heated from the top
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Figure 5. Bifurcation diagram as a function of RT for ϕ = −0.4, Le = 10 and a =0.05: flow
intensity Ψ0. —, - - -, analytical; �, numerical.

(RT < 0). It will be demonstrated also that for R
a,3

T C < 0, the ‘pseudoconductive’ state,
in the case of a cavity heated from the bottom, always exists. Figure 4 shows three
different domains: a domain with two positive subcritical Rayleigh numbers and
one negative subcritical Rayleigh number (zone A); a domain with one subcritical
Rayleigh number (zone B); and a domain with three positive subcritical Rayleigh
numbers (zone C). These three cases will be discussed in the following graphs.

Figure 5 illustrates the bifurcation curves obtained for ϕ = −0.4, Le= 10 and
a =0.05 (zone A). The dotted lines correspond to a pure Bénard situation (a = 0). As
can be seen from figures 4 and 5, in the absence of side heating, the critical Rayleigh
number for the onset of supercritical convection occurs for a negative value of the
Rayleigh number (cavity heated by the top), namely R

sup
T C = −3.53, and the transition

to convection occurs through a subcritical bifurcation at Rsub
T C = 18.06 when the cavity

is heated from the bottom. Thus, figure 5 exemplifies how the side heating affects both
supercritical (RT < 0 in this case) and subcritical (RT > 0 in this case) bifurcations.
The imperfection brought by side heating is depicted by the solid and dashed lines.
The results indicate that, when the value of RT is relatively small, both the analytical
and the numerical results predict the existence of a clockwise circulation (Ψ0 < 0). This
type of flow, which numerically can develop from rest as the initial condition is the
‘pseudoconductive’ flow. For RT > 0, it is observed that a first subcritical bifurcation
appears at a critical Rayleigh number Ra,2

T C = 16.73, which is lower than that of the
critical Rayleigh number for a = 0 (see figure 4). The results also reveal a second
subcritical bifurcation at a second Rayleigh number Ra,1

T C = 19.24, larger than that of
the critical Rayleigh number for a =0, above which five solutions are theoretically
possible for a given RT . Thus, in addition to the expected ‘natural’ circulation, the
upper curves indicate the possible existence of two anticlockwise circulations (Ψ0 > 0).
These flows, which circulate in a direction opposite to that imposed by the horizontal
temperature gradient, are referred as ‘antinatural’ flows (see Sen, Vasseur & Robillard
1987). Figure 5 shows that the side heating, inducing a clockwise circulation, weakens
the strength of the ‘antinatural’ flows, while it enhance that of the ‘natural’ flow. The
lower branch of the ‘natural’ and ‘antinatural’ solutions, represented by a dashed line,
is unstable and as such it has not been possible to obtain numerical confirmation
of its existence. When the cavity is heated from the top (RT < 0) the onset of
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Figure 6. Bifurcation diagram as a function of RT for ϕ = 0.2, Le =10 and a = 0.05: (a) flow
intensity Ψ0, (b) Nusselt number Nu and (c) Sherwood number Sh. —, - - -, analytical; �,
numerical.

‘antinatural’ flow occurs now through a subcritical bifurcation at Ra,3
T C = −6.30 as

compared with the supercritical Rayleigh number R
sup
T C = −3.53 characterizing the

onset of supercritical convection when a = 0.
Figure 6 shows the effect of side heating on Ψ0, the magnitude of the streamfunction

at the centre of the cavity, and Nu and Sh, the Nusselt and Sherwood numbers, as
a function of RT for ϕ = 0.2, Le= 10 and a = 0.05 (zone B). For this situation,
since the value of ϕ is positive, both the thermal and solutal buoyancy forces are
cooperating. Here again, when the value of RT is relatively small, both the analytical
and the numerical results predict the existence of the ‘pseudoconductive’ flow and, for
RT >Ra,1

T C = 5.67, the results indicate that three solutions are theoretically possible for
a given RT , namely the ‘natural’ and the stable and unstable ‘antinatural’ branches. It
was possible to verify numerically the analytically predicted ‘antinatural’ curve down
to the vicinity of the turning point which occurs at Ra,1

T C . In figure 6, results are also
presented for RT < 0 for which stabilizing vertical temperature and mass fraction
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Figure 7. As figure 6, but for ϕ = −0.2.

gradients and negative destabilizing horizontal temperature and mass fraction gradi-
ents are now applied on the layer. This situation gives rise to a ‘pseudoconductive’ flow.

Figure 7 shows Ψ0, Nu and Sh as a function of RT for ϕ = −0.2, Le= 10 and a = 0.05,
i.e. when the thermal and solutal buoyancy forces are opposing each other (zone C).
For a = 0.05 and negative values of RT , for which the cavity is heated from the top and
from the right-hand-side vertical wall, the only possible solution is an anticlockwise
circulation (Ψ0 > 0) corresponding to the ‘pseudoconductive’ flow. When the cavity
is heated from the bottom and through the left-hand-side vertical wall (RT > 0), the
results indicate that for small values of RT , the ‘pseudoconductive’ flow (Ψ0 < 0) is
the only solution. As the value of RT is made larger, the two convective branches
discussed earlier, for RT > Ra,1

T C = 18.62 and Ra,2
T C =13.57 are progressively recovered.

In the range Ra,2
T C < RT < Ra,1

T C , three solutions, namely the ‘pseudoconductive’ and the
stable and unstable ‘natural’ flows, coexist. When RT is made larger, it is seen from
figure 7 that for RT > Ra,1

T C , five solutions, three ‘natural’ and two ‘antinatural’ are
possible, two of which are unstable.
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(a)

(b)

(c)

Figure 8. Contour lines of streamfunction (top), temperature (middle) and mass fraction
(bottom) for RT = 25, ϕ = −0.2, Le= 10, a = 0.05 and A = 8: (a) natural flow Ψ0 = −1.47,
Nu =1.85, Sh= 6.59; (b) natural flow Ψ0 = −0.05, Nu = 1.00, Sh = 1.10; (c) antinatural flow
Ψ0 = 1.31, Nu = 1.63, Sh= 6.57.

Numerical confirmation of the analytical model, and of the existence of multiple
solutions is demonstrated in figure 7. This last point is also illustrated in figure 8
for the case RT = 25, ϕ = −0.2, Le =10 and a = 0.05. For this situation, three stable
solutions were obtained, one of the solution being ‘antinatural’ and the two others
‘natural’. Here again, an appropriate initial condition had to be used to simulate the
three different solutions. Thus the weak diffusive type natural solution (figure 8a),
was obtained using the rest state as the initial condition to initiate the numerical
procedure. However, a convective flow pattern circulating in the appropriate direction
was used as the initial condition to obtain the ‘natural’ and the ‘antinatural’ flows
depicted in figure 8(b) and 8(c), respectively.

Another view of the effect of side heating intensity on the existence of multiple
solutions is depicted in figure 9 for Le= 10 and various values of RT . The case
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ϕ = −0.4, for which the thermal and solutal buoyancy forces are cooperating is
depicted in figure 9(a) and will be discussed first. In the absence of side heating
(a = 0), convection is possible only above a supercritical Rayleigh number R

sup
T C = 3.75

as predicted by (5.3). Thus, for RT < R
sup
T C , it can be seen from figure 9(a) that the

resulting flow pattern corresponds to a ‘natural’ flow, circulating in the direction
imposed by the side heating, i.e. clockwise (anticlockwise) for a positive (negative)
value of a. Above the supercritical Rayleigh number, in the pure Bénard situation
(a = 0), the resulting unicellular flow induced by the constant heat flux q ′ rotates
indifferently clockwise or counterclockwise. When a side heating aq ′ is applied on the
vertical walls of the cavity it can be seen from figure 8(a) that in addition to ‘natural’
flows, the existence of ‘antinatural’ flows is also possible provided that the constant
a is small enough for a given RT . The second and fourth (first and third) quadrants
represent the ‘natural’ (‘antinatural’) flows. Thus, for RT > R

sup
T C and for small values

of the constant a, three values of Ψ0 are possible. However, the inner ‘antinatural’
branch is unstable and is shown by broken lines.

Similar results obtained for ϕ = −0.2, i.e. when the thermal and solutal buoyancy
forces are opposing each other, are presented in figure 9(b). For this situation, in the
absence of side heating (a = 0), convection occurs through finite-amplitude motion
when the Rayleigh number is above a subcritical Rayleigh number Rsub

T C = 15.99, as
predicted by (5.4). Here again for RT < Rsub

T C , figure 9(b) shows that the only possible
flow is a ‘natural’ one circulating clockwise (anticlockwise) when RT is positive
(negative). Above the subcritical Rayleigh number, in the pure Bénard situation
(a = 0), four solutions (two stable and two unstable), corresponding to unicellular
cells circulating indifferently clockwise or counterclockwise, are predicted by the
analytical model. For Rsub

T C < RT <R
sup
T C , and for small enough values of the constant

a, a fifth solution corresponding to the ‘pseudoconductive’ flow is also possible.
All the numerical results reported so far indicate that the resulting flows are

unicellular and parallel in the core of the cavity. This is the basis of the analytical
model proposed in the present study. However, the numerical simulations have also
revealed the existence of different flow structures and time periodic solutions that
will now be discussed. Figure 10(a) displays the bifurcation diagram Ψ0 versus ϕ for
RT = 25, Le= 10 and a = 0.05. The upper branch and the lower one represent the
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‘antinatural’ and the ‘natural’ solutions, respectively, as predicted by the analytical
model. Symbols 1, 2 and 3 refer to figure 4 and the range of existence of the
‘antinatural’, ‘natural’ and ‘pseudoconductive’ regimes. Numerical confirmation of the
upper ‘antinatural’ branch is observed to be excellent in the range −0.2 � ϕ � 3. For
ϕ � −0.2, a loss of stability of the ‘antinatural’ convection patterns occurs and the
numerical solution evolves towards the most stable ‘natural’ lower branch. For ϕ > 3,
it was found numerically that the flow becomes unsteady. The resulting flows pattern
(figure 10a), is characterized by a slightly oscillating flow structure in the core of
the cavity, surrounded by a steady unicellular parallel cell confined by the walls
of the cavity. This type of flow was also observed numerically while studying the
‘natural’ branch (Ψ0 < 0) for values of ϕ � 4. For −1.52 <ϕ < −0.11, it is seen that the
present theory predicts the existence of three possible solutions for a given value of
ϕ, one of these solutions (dashed lines) being unstable. The upper curve corresponds
to the ‘pseudoconductive’ regime. For this situation, it was possible to obtain
numerical results for values up to the upper turning point (ϕ = −0.11) connecting
the ‘pseudoconductive’ and the unstable ‘natural’ branches. Although the strength of
the convection Ψ0, for the ‘pseudoconductive’ branch, is very small, the enlargement
depicted in figure 10(a) shows that the agreement between the numerical code used
in that investigation and the analytical model is extremely good. Also, it can be seen
that as the parameter encompass the value −1, the sign of Ψ0 changes. This follows
from the fact that Ψ0 = 0 when ϕ = −1, for which the opposing thermal and solutal
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buoyancy forces are equal. However, when ϕ < −1 (ϕ > −1), the thermal (solutal)
buoyancy forces are predominant such that Ψ0 > 0 (< 0). Numerical confirmation of
the present analytical model, for the ‘natural’ branch, is obtained only for 0.1 <ϕ < 4.
It was not possible to obtain numerical results for values of ϕ between 0.1 and −1.52
(for which a second turning point occurs). The numerical computations indicate that,
as the value of ϕ is decreased from ϕ = 0.1 (for which a parallel flow is obtained)
to ϕ = −1.5, the resulting flow pattern changes drastically. Thus, as depicted in fig-
ure 10(a), the fluid is now stagnant almost everywhere in the cavity except at the
centre where a very small cell exists. Finally, in the range −0.11 <ϕ < 4, the existence
of both the ‘pseudoconductive’ and the ‘natural’ solutions is confirmed numerically.

Another type of steady non-parallel flow configurations was obtained in this study
as illustrated in figures 10(b) and 10(c) for the case RT = −15, ϕ = −2.8, Le= 10 and
a =0.1. Thus, starting the numerical procedure with a counterclockwise unicellular
cell, yields the results shown in figure 10(b). The flow pattern consists in 7 cells
of approximately equal size. The rotation of each cell is identified by a positive
(counterclockwise) or a negative (clockwise) sign. Thus, it is observed that the flow
is up the heated right-hand-side vertical wall and down the cooled left-hand-side
vertical wall. On the other hand, figure 10(c) shows the results obtained upon using
a clockwise unicellular cell as an initial condition. The flow patterns consist of only
five cells, the size of the central cell being considerably larger than that of the other
cells. Also, it is now observed that the flow is down and up the heated and the cooled
vertical walls, respectively.

5.2. Convection for the particular case (ϕ = −1)

5.2.1. Onset of convection: the linear stability analysis

In this section, the special case ϕ = −1, for which the buoyancy forces induced
by the thermal and solutal effects are opposing each other and of equal intensity, is
considered. It is noted that similar investigations have been reported in the past, for
the case of a vertical cavity heated isothermally from the sides, by Traore & Mojtabi
(1994) and Marcoux, Charrier-Mojtabi & Bergeron (1998). For this situation, the
purely diffusive state Ψ = 0 and T = C = −ax − y is a solution of the governing
set of equations (2.8)–(2.10). The linear stability of this rest state, which is a direct
consequence of the Soret effect, is now considered.

The solution of the perturbed equations of momentum, energy and solute diffusion
is searched in normal modes, namely:

Ψ (t, x, y) = Ψ0 eptF (x, y),
Θ(t, x, y) =Θ0 eptG(x, y),
Φ(t, x, y) = Φ0 eptG(x, y),

⎫⎬
⎭ (5.7)

where F (x, y) and G(x, y) are space functions satisfying the boundary conditions
describing the fields of Ψ , Θ and Φ at the onset of convection, p is the growing rate
of the perturbation and Ψ0, Θ0 and Φ0 are unknown amplitudes.

This leads to the following set of equations:

Ψ0∇2F = −RT (Θ0 − Φ0)
∂G

∂x
, (5.8)

pΘ0G − Ψ0

∂F

∂x
+ aΨ0

∂F

∂y
= Θ0∇2G, (5.9)

pεΦ0G − Ψ0

∂F

∂x
+ aΨ0

∂F

∂y
=

1

Le
(Φ0 − Θ0)∇2G. (5.10)



334 A. Bahloul, P. Vasseur and L. Robillard

The procedure to solve the above set of equations numerically has been discussed
in detail by Mamou & Vasseur (1999). First, the Galerkin method is used to turn
(5.8)–(5.10) into the weak formulation. Then, a finite-element method, based on the
four-model cubic Hermite element, is used to obtain the following discretized set of
linear equations:

Ψ0[K]Ψ0
{F } =RT (Θ0 − Φ0)[B]{G}, (5.11)

pΘ0[M]{G} + Ψ0L{F } =Θ0[K]{G}, (5.12)

pεΦ0[M]{G} + Ψ0L{F } =
1

Le
(Φ0 − Θ0)[K]{G}. (5.13)

where [B], [K], [K]Ψ0
, [L] and [M] are square matrices defined by:

[B]e =
∫

Ωe

∂Nj

∂x
Ni dΩe, [K]e = [K]eΨ0

=
∫

Ωe ∇Nj · ∇Ni dΩe,

[L]e =
∫

Ωe

(
−∂Nj

∂x
Ni + a

∂Nj

∂y
Ni

)
dΩe, [M]e =

∫
Ωe Nj · Ni dΩe,

⎫⎪⎪⎬
⎪⎪⎭

(5.14)
Ω being the physical domain of integration.

From (5.11)–(5.13), the special case p = 0 yields the marginal state of instability
for which the exchange of stability is valid. In this situation, using the fact that
Φ0 = (1 + Le)Θ0/Le, the following eigenvalue problem is readily obtained:

[E − λI ]{F } =0, (5.15)

where [E] = [K]−1
Ψ0

[B][K]−1[L] and λ= −1/LeRT .
A non-trivial solution {F } �=0 is possible only if the determinant of [E −λI ] is zero.

In this way, (5.15) yields m eigenvalues, λi , with their corresponding eigenvectors {Fi},
where i =1, m. Rearranging the eigenvalues as λ1 < λ2 � λm, then the supercritical
Rayleigh number for the onset of motion is given by:

R
sup
T C = −R0

Le
, (5.16)

where R0 = 1/λm is a constant depending on the aspect ratio A of the cavity and the
constant a.

The effect of a and A on the numerically determined constants R0 is illustrated in
table 1. Most of the results presented in this table were obtained for a mesh size of
32 × 12 which is proved to be sufficient to model the problem accurately. For a given
set of governing parameters, it was found that two different solutions are possible,
one corresponding to λ1 (R0 > 0) and the other to λm (R0 < 0). In general, the two
eigenvalues λ1 and λm are not equal, resulting in two different solutions. According
to (5.16), the second solution (R0 < 0) yields a positive value of the critical Rayleigh
number R

sup
T C . This solution corresponds to the case of a layer heated from the bottom

(figure 11). On the other hand, the first solution (R0 > 0) yields a negative critical
Rayleigh number R

sup
T C , for which the layer is heated from the top and cooled from the

bottom. For this last situation, it is noticed that the lateral walls of the cavity are now
heated and cooled from the left- and the right-hand sides, respectively. From table 1,
it can be seen that, as expected, for a given strength of the side heating (i.e. a) the
magnitude of the R

sup
T C (i.e. R0) decreases as the aspect ratio A is made larger. On the

other hand, it is found that, for a given value of A, R0 decreases as the strength of
the side heating is promoted. Naturally, when a → ∞, it is seen that λ1 = −λm and the
two resulting flow patterns are the mirror image of each other. The solution is not
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A

a 1 2 5 10 ∞

0 (1) 22.94 14.79 12.45 12.11 12.00
(2) −∞ −∞ −∞ −∞ −∞

1 (1) 22.76 14.71 12.43 12.10 12.00
(2) −1569.53 −694.19 −511.82 −489.18 −483.75

3 (1) 21.48 14.04 12.24 12.05 11.99
(2) −145.01 −87.98 −73.69 −71.73 −71.23

5 (1) 19.42 12.86 11.77 11.60 11.56
(2) −64.64 −41.34 −34.54 −33.62 −33.38

8 (1) 16.20 10.76 9.55 9.32 9.25
(2) −34.26 −22.10 −18.45 −17.94 −17.81

10 (1) 14.35 9.49 8.25 8.05 7.99
(2) −25.96 −16.73 −13.96 −13.57 −13.47

100 (1) 2.03 1.28 1.07 1.04 1.03
(2) −2.14 −1.35 −1.12 −1.09 −1.08

∞ (1) 209/a 131/a 109/a 106.5/a 106/a
(2) −209/a −131/a −109/a −106.5/a −106/a

Table 1. Constant R0 for various values of a and A: (1) heated from the bottom;
(2) heated from the top.
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Figure 11. Case of an infinite layer (A → ∞) for ϕ = −1: effect of side heating coefficient a on
(a) the constant |R0| and (b) the wavenumber AC . —, heated from the top; - - -, heated from
below.

affected by the relatively negligible vertical temperature and mass fraction gradients,
but is driven essentially by the positive or the negative horizontal temperature and
mass fraction gradients.

In the case of an infinite layer, the effect of a, on both the numerically determined
constant |R0| and the critical wavenumber AC , is depicted in figure 11. This particular
case was simulated numerically by considering a cavity of aspect ratio AC , subject
to periodic boundary conditions applied on the right- and the left-hand vertical
boundaries. In this way, R0 was obtained for various values of AC , the minimum
corresponding to the critical Rayleigh number for the onset of convection in an
infinite horizontal layer. For a → 0, R0 → 12 when the cavity is heated from the
bottom. Figure 11 indicates that for large values of a, i.e. when the horizontal
temperature and mass fraction gradients are predominant over the vertical ones, the
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(a)

(b)

(c)

(d )

Figure 12. Streamlines at the onset of convection for a cavity (A =8) for ϕ = −1; a = 10:
(a) heated from the bottom, (b) heated from the top; a = 1: (c) heated from the bottom,
(d) heated from the top.

constant R0 tends asymptotically towards the value |R0| =106/a where AC → 2.5.
Naturally, this result is independent of the heating mode (from below or from the
top) imposed on the horizontal walls. Figure 12 presents the effect of side-heating
coefficient a on the streamline patterns at the onset of convection as predicted by
the linear stability analysis for a shallow cavity with an aspect ratio A= 8. Typical
streamlines corresponding to large values of a (a = 10) are in figures 12(a) and 12(b),
for the case of a layer heated from the bottom and from the top, respectively. The
inclination of the cells is different because the direction of the horizontal temperature
gradients is reversed for the two heating modes considered here. The influence of the
Soret effect on the onset of motion in a tall vertical enclosure subject to constant heat
fluxes has been investigated by Mamou, Vasseur & Bilgen (1998) for the case where
the buoyancy forces induced by the thermal and solutal effects are opposing each
other and of equal intensity. For this situation, both the streamlines patterns and the
resulting critical Rayleigh number were found to be equivalent to the results obtained
here for a horizontal layer. This is not surprising since it has been demonstrated
by Mamou (1997) and Mamou et al. (1998) that in the case of the onset of double
diffusive convection in a vertical or horizontal fluid layer subject to equal and opposite
fluxes of heat and mass, the supercritical Rayleigh number for the onset of motion
is given by R

sup
T C(1 − Le) = 105.3. Hence, the constant R0 has the same value for the

two problems. However, the dependence of R
sup
T C on Le is observed to be different.

As the value of a is made very small, i.e. when the vertical temperature and mass
fraction gradients are predominant over the horizontal ones, figure 11 indicates that,
as expected, R0 depends strongly on the heating mode. Thus, when the cavity is heated
from the top and cooled from the bottom, AC → ∞, resulting in a parallel flow pattern
at the onset for which R0 → 12 (in agreement with (5.3), a constant reported by Nield
(1967) for the case of a porous layer subject to constant fluxes of heat and mass
(see for instance figure 12c for a = 1). On the other hand, when the cavity is heated
from the bottom, figure 11 indicates that |R0| (i.e. R

sup
T C) → ∞ as the value of a → 0.

Thus, according to the linear stability theory, the fluid layer becomes unconditionally
stable for this situation since the buoyancy forces resulting from the stabilizing agent
(mass) are predominant over those from the destabilizing one (heat), which is also in
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agreement with the parallel-flow approximation. Figure 12(d) shows the streamlines
obtained for a cavity heated from the top, and for a relatively low value of a, namely
a =1.

5.2.2. Finite-amplitude convection

The results of the approximate analytical solution will now be considered for
ϕ = −1, for which (4.15) becomes:

g(Ψ0, RT ) = Ψ0

(
Le4Ψ 4

0 − 2bLe2d1Ψ
2
0 − b2d2

)
+ d3Ψ

2
0 + d4 = 0, (5.17)

where

d1 = R̄T Le2 − (Le2 + 1), d2 = −4R̄T Le2 − 4Le2,

d3 =
3

2
R̄T abLe[Le3 − (1 − Le2)], d4 = −3R̄T ab2Le.

⎫⎬
⎭ (5.18)

Thus, Ψ0 = 0 is always a solution of (5.17). Nevertheless, (5.17) predicts a
supercritical Rayleigh number for the onset of convection: R

sup,p
T C =12/Le, in

agreement with (5.3).
The critical Rayleigh number predicted by the parallel-flow approximation

(AC → ∞) is different from the supercritical Rayleigh number predicted by the
linear stability analysis (for which AC is finite, as illustrated in figure 11). Thus,
for the special case ϕ = −1, the present analysis yields six different Rayleigh numbers
for the onset of convection, namely three subcritical Rayleigh numbers Ra

T C , one
supercritical Rayleigh number predicted by the parallel-flow approximation R

sup,p
T C

and two supercritical Rayleigh numbers R
sup
T C predicted by the linear stability theory.

Figure 13 shows the bifurcation diagram Ψ0 versus RT , obtained for ϕ = −1,
Le= 10 and a = 0.3. In the absence of side heating (a = 0), the analytical solution
(not presented here) shows that for RT < 0, the onset of convection occurs through
a pitchfork bifurcation at a supercritical Rayleigh number R

sup
T C = −1.2 as predicted

by the linear stability theory and the parallel flow approximation (5.3). Naturally,
the resulting unicellular convective pattern rotates indifferently clockwise or counter-
clockwise. The imposition of side heating (a �= 0) modifies the bifurcation diagram
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described above in the way depicted in figure 13. For RT < 0, the purely diffusive
solution is stable down to R

sup
T C = −1.2 where it undergoes a transcritical bifurcation.

From this point, two solution branches are observed to occur. The first solution
(RT < −1.2) is a stable supercritical branch corresponding to an ‘antinatural’ flow.
Numerical confirmation of this solution was obtained down to RT = −45, below which
the resulting flows were found to be unstable and to evolve towards the more stable
upper ‘natural’ convection curve. The second solution (RT > −1.2) is the unstable
subcritical solutal branch which undergoes a saddle-node bifurcation at Ra,3

T C = −1.16
and becomes stable, as demonstrated numerically. The effect of side heating for RT > 0
will be now discussed. For this situation, the purely diffusive solution is stable up to
R

sup
T C = 516.06, according to the linear stability theory. On the other hand, the present

nonlinear analytical model shows that the effect of a is to break the symmetry of
the two subcritical branches obtained for a = 0 and for which the turning points are
at Rsub

T C =22.87. Thus, the turning point of the upper ‘antinatural’ branch ( Ψ0 > 0)

occurs now at Ra,1
T C = 44.99 whereas that of the lower natural branch (Ψ0 < 0) occurs

at Ra,2
T C = 11.53. It has not been possible to obtain a numerical confirmation of the

upper curve for the range of Rayleigh numbers considered here. However, a good
agreement between the analytical and the numerical results is observed for the natural
branch for values of RT down to 55. At this particular Rayleigh number, it was found
that not only are a unicellular parallel flow and a purely diffusive solution possible
but, upon using appropriate initial conditions, a flow structure consisting of two
corotating cells separated by a stagnant fluid is also predicted numerically. Upon
further reducing the Rayleigh number, the numerical results indicate the existence, in
the range 25 <RT < 50, of a flow structure consisting in a single cell located in the
centre of the cavity, as already discussed in figure 10. For RT < 25, the rest state is
the only stable possible solution predicted by the numerical simulation.

The transcritical bifurcation described in figure 13 is characterized by the fact that
the onset of convection occurs with an infinite wavenumber (AC → ∞) for which both
the stability and the parallel-flow approximation yield the same supercritical Rayleigh
number. This is not always the case as illustrated in figure 14 for Le= 10 and
a =5, according to the parallel-flow approximation, R

sup,p
T C = −1.20. However, from

the linear stability analysis, the onset of motion occurs for AC = 4.79, corresponding
to R

sup
T C = −1.16. Thus, it is seen from figure 14 that the purely diffusive solution

is stable down to R
sup
T C = −1.16. This point is connected, by an unstable branch, to

R
sup,p
T C = −1.20 from which two solution branches are observed to occur, similarly to

the case in figure 13. Numerical confirmation of the present theory was obtained for
the upper curve (‘natural’ flow), but not for the lower curve (‘antinatural’ flow), at
least for the range of Ra considered in figure 14.

6. Conclusion
The role of the Soret effect in the natural convection within a shallow horizontal

porous enclosure subjected to cross fluxes of heat was examined analytically and
numerically. Results were obtained for a wide range of the governing parameters,
namely the thermal Rayleigh number RT , the separation parameter ϕ , the Lewis
number Le and the constant a controlling the fraction of the heat flux imposed on
the vertical walls with respect to that imposed on the horizontal walls.

The linear stability theory was used to investigate the onset of supercritical
convection for the special case ϕ = −1, for which the thermal and solutal buoyancy
forces are opposing each other and of equal intensity. The results obtained both for
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Figure 14. Bifurcation diagram as a function of RT for ϕ = −1, Le =10 and a = 5: flow
intensity Ψ0. —, - - -, analytical; �, numerical.

an infinite layer and a bounded cavity show that the physical problem has only one
non-dimensionnal stability parameter R

sup
T CLe =R0. The constant R0, which depends

upon the parameters A and a, is, in fact, equivalent to that reported in the past for
the case of double-diffusive convection (with the same thermal and solutal boundary
conditions). However, for this last situation, the dimensionless group predicted by the
linear stability analysis is given by R

sup
T C(Le − 1) = R0.

The parallel-flow approximation was used to investigate the influence of the govern-
ing parameters on finite-amplitude convection within a shallow porous cavity (A � 1).
In the absence of a horizontal gradient (a = 0), typical bifurcation diagrams have been
obtained for both pure fluids and for binary fluids with the Soret effect. For ϕ > 0, i.e.
when both thermal and solutal contributions are destabilizing, the threshold for the
onset of convection occurs through zero flow amplitude (supercritical bifurcation),
in agreement with the linear stability theory. The present theory shows that the
supercritical Rayleigh number R

sup
T C , for the onset of finite-amplitude convection,

depends on ϕ and Le. As expected, the bifurcation thresholds for the binary fluid are
below those for the pure fluid. However, for ϕ < 0, i.e. when a destabilizing thermal
force is counteracted by a stabilizing solutal force, the threshold for the onset of
convection occurs, in general, through finite flow amplitude (subcritical bifurcation).

The imperfection brought by side heating (a �= 0) to the bifurcation curves was
also investigated. For ϕ > 0, both the analytical and the numerical results indicate
the existence of ‘natural’ and ‘antinatural’ flows. Numerically, the ‘natural’ flow can
be obtained by starting the numerical procedure from pure conduction as the initial
condition. By contrast, an impulsive flow pattern in the appropriate direction is
required as an initial condition in order to reach the ‘antinatural’ state. This latter
exists only if the Rayleigh number is above a subcritical Rayleigh number Ra

T C which
depends on a, ϕ and Le. For ϕ < 0, the situation is more complex, and it is possible
to obtain up to five different solutions (three stable and two unstable), for a given
set of governing parameters. Two of the stable solutions correspond to ‘natural’
flows and the third one to an ‘antinatural’ flow. For the particular case ϕ = −1, it is
demonstrated that steady bifurcations are either pitchfork or transcritical depending



340 A. Bahloul, P. Vasseur and L. Robillard

on a, Le and the sign of RT (i.e. on whether the cavity is heated from the top or from
the bottom).

Numerical results show the existence of multiple steady states near the turning
points, for a given range of the governing parameters. Some of these solutions were
found to have a non-parallel flow structure.

Appendix
The linear stability analysis reported in § 5.2 relies on the assumption that the

instability in the (x, y)-plane is less stable than that in the (x, z)-plane. The validity
of this assumption is now discussed.

For three-dimensional convection, the non-dimensional governing equations for the
special case ϕ = −1, are given by

∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0, (A 1)

u = −∂P

∂x
, (A 2)

v = −∂P

∂y
+ RT (T − C), (A 3)

w = −∂P

∂z
, (A 4)

∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
+ w

∂T

∂z
= ∇2T , (A 5)

ε
∂C

∂t
+ u

∂C

∂x
+ v

∂C

∂y
+ w

∂C

∂z
=

1

Le
(∇2C − ∇2T ), (A 6)

whereP andw are thepressure and velocity component on the z-direction, respectively.
The linear stability of the rest state, for which V (u, v, w) = 0 and T = C = −ax − y,

is now investigated. Since the procedure is standard only the main steps are reported.
The solution of the perturbed equations of velocity, temperature and mass fraction

is searched in normal modes, namely,

V (t, x, y, z) = V (y) ept+kx+lz,

Θ(t, x, y, z) =Θ(y) ept+kx+lz,

Φ(t, x, y, z) =Φ(y) ept+kx+lz,

⎫⎬
⎭ (A 7)

where k and l are the wavenumbers in the x- and z-directions, respectively.
Upon substitution of (A 7) into the perturbed governing equations, the following

set of linear equations are obtained:(
D2

k2 + l2
− 1

)
v + RT (Θ − Φ) = 0, (A 8)

pΘ − (D2 − k2 − l2)Θ −
[
1 − ia

(
1 − l2

k(k2 + l2)

)
D

]
v = 0, (A 9)

pΦ − 1

Le
(D2 − k2 − l2)(Φ − Θ) −

[
1 − ia

(
1 − l2

k(k2 + l2)

)
D

]
v = 0. (A 10)

The above equations, together with homogeneous boundary conditions, may be
written in a compact matrix form as:

L(k, l)Y =pM(k, l)Y, (A 11)
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Figure 15. Effect of side heating coefficient a and parameter l on the constant |R0|.
—, heated from the top; - - -, heated from below.

where Y is a three-component vector of the perturbations (velocity v, temperature Θ

and mass fraction Φ). L(k, l) and M(k, l) are two linear differential operators that
depend on the control parameters (Le, a, RT ).

The system (A 11) was discretized, using a finite-difference scheme, in the domain
between y = 1/2 and y = −1/2. With a standard subroutine for the eigenvalue problem
(IMSL), the eigenvalue p was obtained as a function of Le, a, RT , k, l. Then, the
supercritical Rayleigh number for the onset of motion R

sup
T C = R0(a, l)/Le was obtained

and the results are presented in figure figure 15. The graph, in which |R0| is shown
as a function of parameter a, clearly indicates that, for a cavity heated from below
or from the top, the instability in the (x, y)-plane (l = 0) is less stable than in the
(x, z)-plane (l = 1, 2, 3 . . .). This result is found to independent of parameter a, the
intensity of the side heating.
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